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ABSTRACT

Wilcoxon's signed rank test and a test based on the uniform minimum
variance unbiased estimator of P(X1+ X, < Y1+ Y2) are considered as competitors
of the Mann-Whitney-Wilcoxon (U) test. The criteria used to compare the tests
are Bahadur and Pitman efficiency. For pure translation alternatives U is

superior, but both tests compare favorably with respect to U for certain contami-~

nation alternatives.

1. INTRODUCTION

Let Xl,s..,xm be independent and identically distributed according to
F1 and Yl""’Yn be independent and identically distributed according to F2 where
Fl,Fz are assumed continuous. The excellent properties of the Mann-Whitney-
Wilcoxon U statistic ([12], [7]) for testing Ho: F1= F2= F against translation
alternatives (3.1) are well #nown (e.g. see [3], [4]). These properties may
be attributed, in part, to the fact that U/mn (2.1) is the uniform minimum
variance unbiased estimator of P(X1 < Yl), a result given by Lehmann [5]. This
suggests the investigation of tests based on statistics which, when suitably

scaled, are consistent estimators of the related parameter P(X1+ X2 < YI+ YZ)'
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In this paper we concern ourselves with two statistics having this property.

The W statistic-(2.3) is Wilcoxon's signed rank statistic [12] applied
to a random pairing of the X's with the Y's. The V statistic (2.5), which is the
<Y

uniform minimum variance unbiased estimator of P(X,+ X

1 2 1
m\ /n
be the proportion of the <é><é> quadruples (xi,x H Yk’Yz) with i < j and k < £

+ YZ)’ is defined to

b
satisfying the inequality Xi+ Xj < Yk+ Yz.

In section 2 we show that V is not distribution-free under H.,, but an

0’
asymptotically distribution-free procedure based on V is defined.
Section 3 is devoted to efficiency comparisons of U,V, and W for transla-
tion and contamination alternatives. Although V is slightly more Pitman efficient
than U for normal translation, the calculations of this section illustrate the
general superiority of U to V and W for translations both near and away from Ho.
However, when we consider contamination alternatives of the form Fz(x) = (1-p)
Fl(x) + pFl(x-G), for p close to 0 and 6 large our efficiency calculations favor
V and W. In this section (and section 2) we also discuss the relationship of
W to V.
Section 4 contrasts the use of the random-paired signed rank test W in

place of U with normal theory practice where the random-paired t-test is some-

times preferred to the usual two sample t-test.
2. DEFINITIONS AND BASIC FACTS

The Mann-Whitney form of Wilcoxon's statistic is

n

<
]
M8

o (Xg,¥) . (2.1)

i=l j=1

where

1 if a<b
¢(a,b) = {5 otherwise. (2.2)
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To define the W statistic, let us first take m=n and assume for simplicity
(and without loss of generality) that the random pairing of the X's with the Y's
results in the pairs (Xi’Yi)’ i=1,2,...,n. Let Di = IXi- YiI and Ri = rank of Di
in the joint ranking from least to greatest of [Db];—l . Then Wilcoxon's signed

rank statistic is
n

W= ‘Z Ri¢(xi,Yi). (2.3)
i=1
If m ¥ n we define the W test as the one obtained by computing (2.3) after we
have randomly discarded observations from the larger sample to equalize the sample
nn

*
sizes. In this case the n of (2.3) is replaced by n = min[n,m].

Using a representation due to Tukey [11] we may write W as

n n
W= Z o +X,, Y+Y,)+ ZoX,,Y,). (2.4)
i<j i k] i 73 j=1 L%

Leitting W' denote the first term on the right of (2.4), it is easily seen that
W and W' are asymptotically equivalent test statistics and that ZW'/n(n-l) is
an unbiased and consistent estimator of P(X1+ X2 < Y1+ YZ)'

The uniform minimum variance unbiased estimator of P(X1+ Xz < Y1+ Yz) is
-1 -1 . '
V= @) <;> )i . ¢(Xi+ Xj’ Yk+ YI,)' (2.5)
157
k<4¥ i

This follows from a direct application of a lemma due to Lehmann and
Scheffe (Lemma 3.2 of [5]). We remark that the statistic V, even when m=n, is
based on more ' information than W' as the indicator function ¢(Xi+ Xj, Yk+ Yz)

is computed for nZ(n-1)2/4 quadruples in the case of V versus n(n-1)/2 for .

Unlike U and W, V is not distribution-free under Ho. To see this we
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first apply Lehmann's generalized U-statistic theorem [5] to obtain
Theorem 1l: If 0 < P(X, < Yl) <1, m=sN, n=(1l-s)N with 0 < s <1, then

L
NZ(V-P(X1+ X2 < Y1+ YZ)) has a limiting normal distribution with mean O and

asymptotic variance 4(5-161d+ (l-s)-1601) where

2
85 = E[@(X1+ X, ¥y + X)) 0K+ Xy, Yot Y4)] - ET0(X;+ Xy, Y3+ ¥,) (2.6)
and
2
8y, = E[¢(X1+ Xy Y+ ¥)0(K+ X, T+ Y3)] - ETo(X+ Xy, Y+ Y,). (2.7)
Under HO’
810 = 501 = A(F) - 1/4 (2.8)
where
= < - . - .
A(F) P(X1 X2+ X3 X4’ X1< X5+ X6 X7) (2.9
when XI’XZ""’X7 are independent and identically distributed according to F.
Lehmann [6] has obtained different values of A(F) for various F and thus the
null distribution of V will depend on F.
In the remainder of this paper the phrase "the V test" will mean the
asymptotically distribution-free procedure which treats (V-(I/Z»/QA(V) as a
unit normal random variable under H0 where
2 -1, -1
UA(V) = (4AF)-1)(m "+ n ) (2.10)

and cz(V) is defined by replacing A(F) with a consistent estimate in (2.10). One
such estimate, similar to one proposed by Lehmann [6] in another comtext, is
the following. Let Zl’ZZ""’ZN denote the combined sequence of X's and Y's and

define M(F) to be the relative frequency of the event (Z <Z + 2 =-Z_;
al a2 013 a4
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Za < Za + Za - Za ). This estimate is tedious to compute and in practice only

1 5 6 7

a small proportion of the total number of such simultaneous inequalities should

be checked.
3. EFFICIENCIES FOR TRANSLATION AND CONTAMINATION ALTERNATIVES
We first consider translation alternatives
Hl: Fl(x) = F(x), Fz(x) = F(x-6), 6 > 0, (3.1)

and utilize Bahadur efficiency ([1], [2]) to obtain a measure of asymptotic per-

formance for each fixed 6.
For the efficiency calculations of this section we lose no generality in

assuming m > n and thus we write m=sN, n=(1l-s)N, with 1/2 < s < 1. We define

U-E (V) _
0 ot B G-2)
0 (mn(m+n+1)/12)
. V-E (V) o _
T5”)= v ?v) = - (1/221 1.3 (3.3)
A L@ - (@ +n ) ]?
W-E. (W) _
T‘(VN)= - 2w) W-(n(n+1)/4) T (3.4)
0 (n(n+1) (20+1) /24)

where the subscript O denotes that the moment is computed under Hj, and A(F) and
qA(V) are defined by (2.9) and (2.10). By using Chebychev's inequality it

follows that
7

b;(6) = p-lim —%—-= (125(1-5))%[IF(x+9)dF(x)-(1/2)] R (3.5)
N
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™ %

b,(6) = p-Lim ; - Ls(128)) " [[6(x420)d6(x)=(1/D] (3.6)
N 40(F) -1
M |

b,(6) = p-lim -g- = (3(1-s))% [fe(x+20)dG(x)-(1/2)] , (3.7)
NZ

where G is the distribution function of Xl- X2 when Xl’XZ are independent and
identically distributed according to F. In equations (3.5) - (3.7), "p-lim"

denotes the probability limit of the random variable computed under the Hl
alternatives.
Conditions I, II and III of Bahadur ([1], p.276) are immediately verified

and wve may state

Theorem 2: For the H1 alternatives (3.1), the Bahadur efficiencies are

2
By(W,U) = (bw(e)/bu(e))z _ L[6(x+26)dG(x)-(1/2)] - (3.5)
4s[ [F(x+0) dF(x)-(1/2) ]
2 -1
By(V,0) = (b(8)/by(6))" = s(12A(F)-3) "By(W,U) - . (3.9)

The quantities bi(e), i=U,V,J are, in the terminology of Bahadur, the asymptotic
slopes of the tests based on TéN), Téy), and TéN) respectively.
Part of Bahadur's motivation (specialized to our statistics) of this

efficiency measure is the following. The approximate levels attained by the
(C)) ©))
i i

® is the unit normal cumulative distribution function. The word approximate

statistics T which reject for large values are 1 - @(T ), i =U,V,W, where

relates to the fact that the limiting null distribution ¢ of TgN), rather than

the exact null distribution, is used. Suppose now that H1 is true. For a given
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outcome of the N X's and Y's it makes sense to say the TéN) procedure, for example,

is better than the TéN) procedure if 1 -Q(TéN)) <1 -®(TéN)), or equivalently
if M
the property that the random variable KéN)/KéN) converges in probability to

N .
Tw is

)< KéN) where3 KgN)= -2 1og[l-®(T§N))]. The efficiency measure BQON,U) has

BG(W,U) as N -+ o, Paraphrasing Bahadur, with probability tending to 1,

(M)
U

if BQ(W,U) > 1, and equally successful to this degree of approximation if

less successful (for the particular 6) than T if BGGJ,U) < 1, more successful
BGOH,U) = 1. Of course this is not the only motivation given by Bahadur, and
the reader interested in other interpretations, advantages, and pitfalls of
this efficiency measure should refer to the papers of Bahadur and Gleser.

Table 1 gives values of the Bahadur efficiencies when F is normal with

. 2 . .
variance o°. 1In all the Tables of this paper the entries involving W are only

valid for s = 1/2, but the W efficiencies for s > 1/2 are obtained simply by

dividing the tabular values by 2s.

TABLE 1: BAHADUR EFFICIENCIES FOR NORMAL TRANSLATION

6/o .25 .5 1 2 3
BG(W,U) .990 .960 .860 .641 .533
BG(V,U) 1.025 .995 .891 .665 .552

From (3.8) and (3.9) we see that BG(V,U) does not depend on s. Also,

B,V = (B,0W,U)/B(V,0)) = s~ (12A(F)-3), (3.10)

3 The K(N)

i random variable is introduced by Bahadur for mathematical convenience.
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and this expression is independent of 8. Furthermore, letting 6 -+« in (3.3)

and noting that

lim [ [G(x+26)dG(x)=(1/2)] = 1/2 = lim [[F(x+6)dF(x)-(1/2)], (3.11)

8 -+ 0 »

we have

Corollary 1: 1lim B (W,U) = (4s)'1. lim B (V,U) = (4&(1-*)-12)'1.

6 - 6+
Even in the most favorable case for W, namely s = 1/2, this limiting Bahadur
efficiency is only .5. Also, the values of 6lim Be(V,U) are .518, .510, and .529
-> 00

for the normal, uniform, and exponential distributions, respectively. Thus for

pure translation alternatives which are far from H, we cannot, using Bahadur

0
efficiency as a criterion, recommend either W or V as a satisfactory competitor
for U.

The standing of W and V, as competitors of U, is improved only slighfly
for translation alternatives near HO. By letting 6 »~ 0 in (3.8) and applying
a result of Bahadur ([1], Appendix 2) we may state

Corollary 2: The Pitman efficiencies for the sequence of alternatives

FgN)(x) = Fl(x-(c/N%)) are

EW,0) = () (el D)2, (3.12)

E(V,0) = (12A(F)-3) "Ll 1e%?, (3.13)

where £, are the densities (now assumed to exist) corresponding to F,G.

The Pitman efficiencies are also easily derived by a direct application
of Pitman's formula [8]. 1In fact, equation (3.12) should not be regarded as
new as it is implicit in the work of Pitman [9] where the efficacies of both

the Wilcoxon signed rank test and the Wilcoxon-Mann-Whitney rank sum test are given.
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For s = 1/2, E(W,U) equals 2/3 of the Pitman efficiency of the signed
rank test with respect to the sign test for a single sample from the distribution

G. Some values are given in Table 2.

TABLE 2: PITMAN EFFICIENCIES OF THE RANDOM-PAIRED SIGNED
RANK TEST W WITH RESPECT TO U FOR TRANSLATION ALTERNATIVES

Distribution Density E(W,U)
1. Normal f(x) = (Zﬁ)-l/ze-lez, -0 <x <o, 1.00

2. Uniform f(x) =1, 0<x<1; O otherwise. .889
3. T(2) f(x) = xe-x, x > 0; O otherwise. .781
4. Cosine f(x) = (l-cos(x))/ﬂxz, -0 <x <o ., .720
5. Exponential f(x) = e-x, x > 0; O otherwise. .500
6. Cauchy £(x) = (L2 Y, -w <x <o . .500

Although there is no loss in Pitman efficiency for normal translationm,
the values in Table 2 favor U over W. The status of V for these alternatives
is substantially the same as that of W. Using (3.13) we find the values of
E(V,U) for demsities 1,2, and 5 of Table 2 are, respectively, 1.036, .906,
and .529.

There is some independent theoretical interest in the relationship of
W to V. The statistic V is tedious to compute and not distribution-free under
HO. The random-paired signed rank test removes these difficulties but has the
disadvantage of utilizing an irrelevant randomization. How much efficiency is
lost by using W in place of V? The E(W,V) expression is given by (3.10) and in

Table 3 we list some values.
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TABLE 3: EFFICIENCY OF W WITH RESPECT TO V

Distribution Normal Uniform Exponential

EW,V) .965 .981 .944

The losses in efficiency, when using W in place of V in the equal sample
size case, are only 1.9, 3.5, and 5.6 per cent respectively, for the uniform,
normal, and exponential distributions. (Lehmann [6] has proved MF) < 7/24
which implies E(W,V) <1 for all F.)

We next consider the contamination alternatives

HZ: Fl(x) = F(x), Fz(x) = (1-p)F(x) + pH(x), H(x) < F(x). (3.14)

Hodges and Lehmann [3] have used these alternatives to compare the U test

with the normal theory t-test. From (2.1), (2.4), and (2.5) we have

Ep(U/mn) = fFlsz = ((1 + p)/2) -pfHdF, (3.15)

Ep(zw'/n(n-l)) E,(V) = f(Fl*Fl)d(Fz*Fz)

i}

1-[(1-p) F F42p (1-p)F Hip 2H HIA(F F), (3.16)

n.on . . . . .
where * denotes convolution and the subscript p indicates the moment is com-
*

puted under H From Chebychev's inequality we obtain

)
(N
.U )
cy(P) = p-lim 5= = (s(1-5)12) [(p/2) - p/uarl, (3.17)
NZ
)
Ty y S
oy (p) = p-lim I - (s(1-8))* L(p,F,H) /(4 (F)-1)%, (3.18)

N
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cw(p) = p-lim —%— = (3(1-3));5 L(p,F,H), (3.19)
N2

where
L(p,F,H) = [p-(p2/2) - 2p(1-p)f(F*H)d(F*F) - sz(H*H)d(F*F)], (3.20)

and the symbol "p-lim" in equations (3.17) - (3.19) now denotes the probability

limit of the random variable computed under the Hz alternatives. We then have

Theorem 3: For the H, alternatives (3.14), the Bahadur efficiencies are

2 LZ(P’FJH)
B (W,U) = (c (P)/cy(P)* = 2 (3.21)
P 4sl(p/2)-p/uar]
_ 2 -l
BP(V,U) = (cv(p)/cU(P)) = s(12M(F)~3) BP(W,U)- (3.22)

The efficiency BP(W,V) is independent of p and H and is again given by (3.10).

Thus Table 3 is also applicable for the contamination alternatives.
When H(x) = F(x-96),

2
lim L(p,F,H) = p- &, (3.23)

8 » »

and we then obtain

Corollary 3: For the H2 alternatives with H(x) = F(x-6),

lin B_(W,0) = sa-p/2)%.  iim B (V,0) = (L2 (F)-3) "L(1-(p/2)) 2. (3.26)

8 —» 6 »»
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The limiting Bahadur efficiencies of Corollary 3 are decreasing functiomns
of p but remain above 1 for fairly large p. For example, for s = 1/2,

lim B_(W,U) is greater than 1 as long as p is less than (approximately).536.

8 —»

The indication is that for contamination with a large translation, V and W rate
as serious competitors of U, especially for small p. This impression is further

justified by the Pitman efficiencies. Letting p - 0 in (3.21) yields

Corollary 4: For the H, alternatives, the Pitman efficiencies (p — 0) are

2
s S E R aE ) -(1/2) 12
E(W,U) = 5 ’ (3.25)
[fran - (1/2)]
JE D aE D -1/2)1°
E(V,U) = . (3.26)

(12l(F)-3)£deH-(1/2)]2
The entries in Table 4 are selected values of the Pitman efficiencies
when H(x) = F(x-6) and F is normal with variance 62.

TABLE 4: PITMAN EFFICIENCIES FOR

CONTAMINATION BY A NORMAL SHIFT

6/o .25 .5 1 2 3

E(W,U) 1.005 1.021 1.082 1.313 1.608

E(V,U) 1.041 1.058 1.122 1.360 1.667
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Corollary 5: For the contamination alternatives with H(x) = F(x-6), we have

a. lim E(WU) = s L.  lim E(V,U) = (L2A(F)-3) . (3.27)

6 » 0 -»

b. For all F, 1lim E(V,U) > 2.

g » @

Part a. of Corollary 5 follows directly from (3.25) and b. follows from a. and
Lehmann's upper bound of 7/24 for A(F). We also note that (3.27) agrees with
the results one obtains by letting p -+ 0 in (3.24). In other words, for the

B efficiencies of Theorem 3, with H(xX) = F(x-6) we have 1lim 1lim B =
p e—’oop—bo

lim lim B .
p—»O 6 -

4. SOME COMPARISONS WITH THE PAIRED t-TEST

It is interesting to compare the relationship of W to U with the relation-
ship of the paired t-test to the unpaired t-test for the case m= n.

= N(“zyag) With-dz = G; an exact test of

2
When F, = N(ul,al) and F 1

1
HU:AH1-= “2 can be based on

2

(a(a-1)) % T-D)
(4.1)

t =
1 n P
[ z ((xi-i)2 + (Yi—Y)z):I

i=1

which, under H,, has the Student t-distribution on 2n-2 degrees of freedom. If

0’
2

9y ¥ Gg the t, test will not be exact. By randomly pairing the X's with the

Y's an exact test of HO based on

(n(@-1)% T |
t = ’ (4.2)

2 n AN -
o)

z
=

1
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is obtained. (Here zi = Yi- Xi and we have again assumed, for simplicity of
0’ &2

has the Student t-distribution on n-1 degrees of freedom even when the popula-

notation, that the random pairing results in the pairs (xi’Yi)') Under H

tions have different variances.
The situation in the nonparametric c¢ase is partially amalogous. 1If F1

and F2 differ by a scale parameter the U test will not be exact (e.g. see [10]).

On the other hand, W will preserve its null distribution when F1 and F2 are
symmetric about the same point. In particular, if Fl(x) = H(x-6), F2(x) = H(c(x~6))
with ¢ # 1 and H symmetric about O, the W test will be exact but the U test will
not be exact. If considerations of exact size are important to the user, this
would represent an advantage of the W test.

There may be other reasons to pair - not at random. For example, we
might want to eliminate the nuisance parameters in a model corresponding to

E(Xi) = d_+ bi’ E(Yi) = u2+ bi’ i=l,2,...n. At any rate suppose we pair when it

1

is not really necessary. (The phrase "not really necessary" could refer to
Ui = 02 when we are wary of unequal va;iances, or all the b;'s being equal in the
model just mentioned.) How much efficiency is lost by pairing? With t-testing,
asymptotically we lose nothing as the Pitman efficiency of t, with respect to
t1 is 1. However, we can lose asymptotic efficiency by using W in place of U.
The efficiency loss for various distributions can be obtained from Table 2,
section 3.

One important dissimilarity between the tl- t2 and U-W correspondences

is the following. By using t, in place of t., we retain the same consistency

1
parameter. The two-sided t) and t, tests will be consistent if E(Y-X) # O
(assuming finite variances). But the set of alternatives for which the U test

is consistent is different than the set of alternatives for which the W test
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is consistent. The two-sided test based on U is consistent if and only if

P(X1 < Yl) $ 1/2 while the two-sided tests based on V and W are consistent if
and only if P(X,+ X, < Y+ Y2) ¥ 1/2. 1f we consider the densities £,(x) =1

if 4 <x <5, and 0 othervise, and f,(x) = a2 if 1 <x <2, bif 10 <x < 11,

and O otherwise, a simple calculation shoﬁs that for a = b = 1/2 the two-sided
W and V tests are consistent but the two-sided U test is not consistent, whereas

for a = 1//5—, b= 1-(1//5) we get the opposite conclusion. Similar examples are

easily constructed for the one-sided tests.

5. CONCLUSION

For pure translation alternatives, neither W nor V proved to be a worthy
competitor of the U test. On the basis of this work the author recommends W and
V for consideration in situations where protection against alternatives of the
form Fz(x) = (l-p)Fl(x) + pFl(x-O) is desirable. For example, we may suspect
that the treatment (with translation 6) will be active on a fraction p of the
subjects who receive it. Suppose we have little information about the value of
p. For p close to 1, these alternatives resemble the pure translation alternatives
H1(3.1). For p close to 0, Table 4 and Corollary 5 are relevant. If good sensi-
tivity to these alternatives with p near O is important, V or W may be preferred
to U.

Confronted with a choice between W and V, the decision will depend on the
vagaries of the user. Many people will immediately dismiss W due to its dependence
on randomization. On the other hand, V is not distribution-free and is more
difficult to compute than W. The efficiency loss incurred by using W in place
of V is small when s is approximately 1/2 but otherwise becomes intolerable

(divide the entries of Table 3 by 2s).
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